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Stochastic dynamics with a mesoscopic bath

Alexander V. Plyukhin and Jeremy Schofield
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 3 April 2001; published 20 September 2001!

We consider the effects of bath size on the nature of the dynamics and transport properties for two simple
models in which the bath is composed of a collinear chain of harmonic oscillators. The first model consists of
an untwisted rotating chain~elastic rotor! for which we obtain a non-Markovian equation analogous to the
generalized Langevin equation for the rotational degrees of freedom. We demonstrate that the corresponding
memory function oscillates with a frequency close to that of the lowest mode of the chain. The second model
considered consists of a tagged oscillator in a finite harmonic chain. For this model, we find an additional
harmonic force in the generalized Langevin equation for the terminal atom that does not appear in the equation
of motion for the semi-infinite chain. It is demonstrated that the force constant for the additional harmonic
force scales as 1/N, whereN is the number of oscillators in the chain. Using an exact representation for the
velocity correlation function, the transport properties of the model are discussed.
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I. INTRODUCTION

The dynamics of a system interacting with a bath has b
the subject of sustained study for decades. While the e
librium properties of the system are essentially insensitive
bath properties, the character of the relaxation processes
ally depends crucially on the temporal and spatial scale
the dynamics of the bath@1#. One systematic approach fo
examining how the physical characteristics of the bath in
ence the dynamics of the system is based on the Zwan
Mori projection operator formalism which provides an exa
but formal procedure for the elimination of irrelevant ba
variables. The elimination procedure leads to the general
Langevin equation~GLE! in which the total force acting on
the variable of interest is represented as a sum of a col
noise termF(t) and a non-Markovian dissipative term co
taining a memory function satisfying the fluctuatio
dissipation relation. A particular decomposition of the to
force into fluctuating and regular parts in the GLE is n
unique, and corresponds to a specific choice of the projec
operator. Some forms of the projection operator lead to eq
tions for the relevant variables that differ from the GLE b
conserve the non-Markovian character of the dissipa
~see, for example,@2#!.

If the bath variables evolve much faster than the varia
of interest, one can expect that the dissipative memory fu
tion decays rapidly to zero and can be approximated byd
function on time scales relevant to the dynamics of the s
tem. This assumption is of vital importance in many app
cations, including the Brownian dynamic simulation meth
and its numerous variations. For a large system in whic
full molecular dynamics simulation becomes very expens
it is desirable to consider explicitly only the dynamics
relevant variables while fast variables~referred to as bath
variables! are treated phenomenologically through a mo
incorporating fluctuating and dissipative forces acting on
relevant variables. For a few model systems, such as a h
isotope in a chain of linear oscillators, the validity of th
stochastic equation of motion has been demonstrated ana
cally in the thermodynamic limit@3# and numerically for a
1063-651X/2001/64~4!/041103~10!/$20.00 64 0411
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finite bath@4#. The aim of this paper is to consider two e
ementary situations when the fact that the bath is finite c
not be neglected and may lead to effects surviving in
thermodynamic limit.

The coupling of a system to a sufficiently large bath oft
causes the dynamics of the system to appear to be stoch
and irreversible. While this situation is quite common, the
are situations in which the bath produces an almost regu
rather than stochastic, force acting on the system. In fact,
can anticipate that, if only a small number of bath mod
couple effectively with a system, the dynamics of the syst
appears more deterministic than stochastic in spite of the
that the number of bath degrees of freedom may be v
large. A simple model that exhibits behavior of this kind
an elastic untwisted rotor, which we consider in Sec. II. T
elastic rotor system is modeled as a finite collinear chain
harmonic oscillators rotating as a whole around one of
ends. For this system, we focus on the dynamics of the
gular velocity of the chain, while intrinsic vibrational de
grees of freedom are treated as irrelevant bath variables
brations of the bath lead to fluctuations of the moment
inertia of the rotor and therefore to fluctuations of the ang
lar velocity of the chain. It will be shown that, even in th
case in which a wide separation of time scales exists betw
the rotational and bath motions, their coupling does not le
to Brownian rotational motion, but rather gives a regu
contribution which oscillates with a frequency close to th
of the lowest vibrational mode of the bath. Although effec
of quasimonochromatic external noise have been inve
gated recently@5#, microscopic models leading to the intrin
sic harmonic noise have not been considered.

While obviously oversimplified, the elastic rotor mod
captures the main physical features of rotation-translatio
coupling, and is relevant to the dynamics of long, linear m
ecules, stiff fragments of branched polymer systems,
many other molecular systems. Although rotation-vibratio
coupling is usually relatively small, it may be an importa
factor in the dynamics of orientational ordering of line
molecules anchored to a surface and other processes of
lecular nanotechnology. Moreover, the model can prov
©2001 The American Physical Society03-1
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valuable insight into the intrinsic rotational dynamics
macromolecules with complex three-dimensional structu
such as DNA, since in many cases only fixed-conformat
dynamics of polymer fragments is important@10#.

In Sec. III, the dynamics of a tagged particle in a fin
harmonic oscillator assembly is considered. The motion o
tagged particle in harmonic systems has been the subje
intensive study over many years and still continues to att
attention in the context of investigating the spatiotempo
evolution of the initial energy pulse@6#. In this article, we
focus on the dynamics of a terminal atom of an anchored
finite chain. This model has been considered by many
thors in the semi-infinite chain limit, mainly in the context
studies of gas/surface interactions and condensed-phas
action dynamics@7,8# where the GLE can be derived b
explicitly integrating the equations of motion for the ba
variables@7#. We shall show that for the case of a finite cha
an additional harmonic force appears in the GLE. In Sec.
we discuss transport properties of the finite chain sys
using the exact representation for the velocity autocorrela
function.

II. ELASTIC ROTOR

Consider an elastic rotor system governed by the Ham
tonian

H5
Pf

2

2I
1Hb1U~f!, ~1!

where the Hamiltonian of the nonrotating chain~referred to
as the ‘‘bath’’! is

Hb5
1

2m (
i 51

N

pi
21

mv2

2 (
i 51

N

~qi2qi 21!2, ~2!

andqi and pi are the displacements and momenta of theN
11 atoms of the chain, respectively. The chain rotates a
whole in an external potentialU(f) around an axis perpen
dicular to the chain and passing through the terminal a
anchoring the end of the chain. The anchoring atom is
sumed to be fixed at the origin,q050. In Eq.~1! the conju-
gate momentumPf of the rotation anglef is the angular
momentum of the chain,Pf5I ḟ, while the moment of in-
ertia is I 5( i 51

N m(xi
01qi)

2, wherexi
05 ia is the position of

atom i in equilibrium. We write the moment of inertia in th
form I (t)5I r1dI (t), where

I r5ma2(
i 51

N

i 25
1

6
ma2N~N21!~2N21! ~3!

is the moment of inertia of the rigid chain in which the atom
are frozen in their equilibrium positions, and

dI ~ t !52ma( iqi~ t !1m( qi
2~ t ! ~4!

is the fluctuating part ofI. We focus on the angular velocit
of the chain ḟ5Pf /I , which, in general, is nonlinearly
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coupled to the bath variables$qi ,pi%. We restrict ourselves
to the regime whenḟ(t) is small compared with the lowes
mode v0 of the unperturbed chain, namely,ḟ!v0 . This
condition of a wide separation of time scales for rotation
and vibrational motion is simultaneously the condition
weak rotation-vibration coupling and guarantees that the
placements of atoms are close to those in a nonrotating c
provided the kinetic energy of the harmonic atoms is not
high. When this condition holds, the fluctuating part of t
moment of inertia is small,

udI ~ t !u!I r , ~5!

and the angular velocity can be approximated as a lin
function of dI ,

ḟ'
Pf

I r
S 12

dI

I r
D . ~6!

It should be stressed that inequality~5! does not imply that
the displacements of all atoms are small. In fact, the fluct
tions in the unperturbed system are^qi

2&5 i /(bmv2), where
b is the inverse temperature, which increases withi and may
be comparable to or even larger thana for a long enough
chain. However, sincedI;( iqi;( i 3/2 scales asN5/2, the
ratio dI /I r;1/AN!1.

In the weak coupling approximation, the Hamiltonian f
the system can be decomposed as

H5Hr1Hb1Hc , ~7!

whereHr is the Hamiltonian of the rigid chain,

Hr5
Pf

2

2I r
1U~f!, ~8!

Hb is the bath Hamiltonian defined in Eq.~2! above, andHc
is the coupling term,

Hc52
1

2 S Pf

I r
D 2

dI . ~9!

It is interesting to note that the coupling of the system to
bath occurs through the kinetic energy term of the syst
due to the form of the Hamiltonian in generalized coor
nates. This is quite different from the more common form
the coupling through an interaction potential for the syst
and bath@9#.

It is useful to describe the dynamics of the bath in ter
of the normal coordinates$Qj ,Pj% for unperturbed bath mo
tion corresponding to a nonrotating chain with one fixed e
The normal mode transformation is of the form

qi5
1

Am
(
j 50

N21

Ai j Qj , pi5Am(
j 50

N21

Ai j Pj , ~10!

where the eigenvectors have the components
3-2
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Ai j 5
2

A2N11
sinS p i

2 j 11

2N11D , ~11!

and satisfy orthogonality conditions with respect to bo
indices,

(
i 51

N

Ai j Aik5d jk , (
j 50

N21

Ai j Ak j5d ik . ~12!

The transformed bath Hamiltonian in the normal coordin
representation is

Hb5
1

2 (
j 50

N21

$Pj
21v j

2Qj
2%, ~13!

where

v j52v sinS p

2

2 j 11

2N11D ~14!

are the normal mode frequencies of the bath. In terms
normal coordinates, the variation of the moment of inertia
Eq. ~9! for the coupling HamiltonianHc takes the form

dI 5 (
j 50

N21

$Qj
212BjQj%, ~15!

where the constant vectorBj is defined as

Bj5Am(
i 51

N

xi
0Ai j 5Ama(

i 51

N

iAi j . ~16!

Explicitly calculating the sum, one obtains

Bj52aS m

2N11D 1/2S v

v j
D 2

sinS pN
2 j 11

2N11D , ~17!

where the sine can be approximated by (21) j if N@1.
The Liouville operator corresponding to the Hamiltoni

~7! can be written as

L5Lr1Lb1Lc , ~18!

where the Liouville operators for the rigid chains and for t
isolated bath are

Lr5
Pf

I r

]

]f
2

]U

]f

]

]Pf
, ~19!

Lb5 (
j 50

N21 H Pj

]

]Qj
2v j

2Qj

]

]Pj
J , ~20!

respectively. The coupling term gives rise to the Liouvillia
Lc which can be conveniently decomposed into two pa
Lc5L c

(1)1L c
(2) , where

L c
(1)5S Pf

I r
D 2

(
j 50

N21

~Qj1Bj !
]

]Pj
, ~21!
04110
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L c
(2)52

Pf

I r

dI

I r

]

]f
. ~22!

Using the Liouville operators, one obtains an evoluti
equation for the rotation anglef(t),

I rf̈~ t !52
dU~f!

df
2ḟ~ t ! İ ~ t !, ~23!

to leading order in the small parameterdI /I r . The term
2ḟ İ , where

İ 5L dI 52 (
j 50

N21

~Qj1Bj !Pj , ~24!

can be interpreted as a fluctuating torque due to intrin
noise. Our aim is to derive an equation of motion for ro
tional motion that does not explicitly include bath variable
In what follows, we shall express the functionİ (t) through
ḟ(t), eliminating vibrational degrees of freedom using t
projection operator technique.

The starting point is the operator identity

e(B1C)t5eBt1E
0

t

dteB(t2t)Ce(B1C)t. ~25!

Differentiating Eq. ~25! and definingB5L and C5PL,
whereP is an arbitrary operator, one obtains

eLtL5eLtPL1F~ t !1E
0

t

dteL(t2t)PLF~t!, ~26!

whereF(t)5eQLtQL, andQ512P. Then for any dynami-
cal variableA(t)5eLtA one can write the evolution equatio
for A(t) as

Ȧ~ t !5eLtPȦ1F~ t !1E
0

t

dt eL(t2t)PLF~t!, ~27!

F~ t !5eQLtQLA. ~28!

Here and below a dynamical functionA with its time argu-
ment omitted denotes an initial value, namely,A[A(0). Let
us define the operatorP by the equation

PB5^B&[E rbB dGb , ~29!

whereB is an arbitrary dynamical variable,rb5Zb
21e2bHb is

the equilibrium distribution function for the isolated bat
and dGb5) j 50

N21dQj dPj is the bath phase space eleme
With this definition, the operatorP satisfies the properties o
a projection operator sinceP 25P. Other important proper-
ties of the operator includePLb50 andPF(t)50, the first
of which can be proved by integration by parts and not
that Lbrb50, while the second property follows from th
fact thatPF(t);PQ50.
3-3
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SinceP commutes withLr , the termPLF(t) appearing
in the integral in Eq.~27! is reduced toPLcF(t)5P(L c

(1)

1L c
(2))F(t). The contribution fromL c

(1) can be calculated
by integrating by parts,

PL c
(1)F~ t !52E ~L c

(1)rb!F~ t ! dGb . ~30!

Noting that

L c
(1)rb52

b

2 S Pf

I r
D 2

İ rb , ~31!

we obtain

PL c
(1)F~ t !5

b

2 S Pf

I r
D 2

^ İ F~ t !&. ~32!

The contribution fromL c
(2) , given by

PL c
(2)F~ t !52

Pf

I r
2

d

d f
^dI F ~ t !&, ~33!

is proportional to the small parameterdI /I r and will be ne-
glected. Under these circumstances, Eq.~27! takes the form

Ȧ~ t !5eLt^Ȧ&1F~ t !1
b

2E0

t

dt eL(t2t)S Pf

I r
D 2

^ İ F~t!&.

~34!

If the dynamical variable of interestA is taken to be the
moment of inertiaI, the first term on the right hand side o
Eq. ~34! vanishes sincêİ &50, and the force is of the form

F~ t !5e(Lb1L0)t İ , ~35!

where L05Q(Lr1Lc). The forceF(t) can be calculated
exactly if one neglects the quadratic term in Eqs.~4! and~15!
for dI . This corresponds to the approximation where the c
trifugal force f c(xi) acting on a particulari th atom does not
depend on its displacement but is determined by the equ
rium position of the atom in the chain,f c(xi)'mḟ2xi

0 . It
then follows that

dI 52 (
j 50

N21

BjQj , İ 52 (
j 50

N21

Bj Pj , ~36!

and the operatorL c
(1) is reduced to

L c
(1)5S Pf

I r
D 2

(
j 50

N21

Bj

]

]Pj
. ~37!

SinceL0L b
nİ 50 for n50,1,2, . . . , Eq.~35! implies that

F~ t !5eLbtİ[ İ b~ t !. ~38!

Substituting this result into Eq.~34! leads finally to the equa
tion
04110
-

b-

İ ~ t !5 İ b~ t !1
b

2E0

t

dt ḟ2~t!^ İ bİ b~ t2t!&, ~39!

where we have used the fact thatPf(t)/I r5ḟ(t) to leading
order in the small parameterdI /I r . Equation~23! for the
angle can therefore be written in the form

I rf̈~ t !52U8~f!1g~ t !, ~40!

whereg(t) is the torque describing the influence of the i
trinsic noise; its ‘‘stochastic’’ and regular non-Markovia
constituents are, respectively,

gs~ t !52ḟ~ t ! İ b~ t !, ~41!

g r~ t !524ma2ḟ~ t !E
0

t

dt ḟ2~t!K~ t2t!, ~42!

where the dimensionless memory function satisfies
fluctuation-dissipation relation

K~ t !5
b

8ma2
^ İ bİ b~ t !&. ~43!

Under the dynamics of the unperturbed bath described
the Liouville operatorLb , the normal modes evolve as

Qj
0~ t !5Qj cos~v j t !1v j

21Pj sin~v j t !, ~44!

Pj
0~ t !5Pj cos~v j t !2v jQj sin~v j t !, ~45!

and the corresponding correlation functions are

^Qj
0~ t !Qj 8

0 &5d j j 8b
21v j

22 cos~v j t !, ~46!

^Pj
0~ t !Pj 8

0 &5d j j 8b
21 cos~v j t !. ~47!

Consequently, the memory functionK(t) can be expressed
as

K~ t !5
b

2ma2 (
j , j 850

N21

BjBj 8^Pj
0~ t !Pj 8

0 &

5
1

2ma2 (
j 50

N21

Bj
2 cos~v j t !. ~48!

Using the expression in Eq.~17! for Bj , the memory func-
tion for largeN is

K~ t !5
1

N (
j 50

N21 S v

v j
D 4

cos~v j t !. ~49!

Examination of Eq.~49! reveals that the first term in the sum
( j 50) exceeds the others by a factor of at least 34, and gives
the main contribution toK(t). As a result, the memory func
tion is a nearly harmonic function oscillating with the fre
quency of the lowest modev0;v/N. The implications of
this result are quite transparent, since the lowest mode
3-4
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responds to the displacements of all atoms in the chain in
same direction. Collective motion of this kind gives th
dominant contribution to the variation of the moment of i
ertia and therefore is coupled more strongly to the rotatio
variables than modes of higher frequencies. In the continu
limit, interpreted as the simultaneous limitsN→` anda,m
→0 with fixed aN5L, mN5M , andka5g, the frequency
v0 takes the finite valueAg/(ML)5(L/c)21, where c
5AgL/M is the velocity of sound in the continuum.

Equation~40! is nonlinear and difficult to solve analyti
cally except in the case of free rotation in whichU8(f)
50 andPf is an integral of the motion. In this casedI (t)
5dI 1(t)1dI 2(t), where

dI 1~ t !52 (
j 50

N21

BjQj
0~ t ! ~50!

is the approximate variation of the moment of inertia for t
nonrotating chain, and

dI 2~ t !52ḟ0
2 (

j 50

N21 S Bj

v j
D 2

cos~v j t ! ~51!

is the variation due to rotation. In Eq.~51! ḟ05Pf /I r is the
angular velocity of the rigid chain. Noting that in both sum
the main contribution comes from the element withj 50,
one can check that

dI 1 /I r;~bmv2a2N!21/2!1, ~52!

dI 2 /I r;~ḟ0 /v0!2. ~53!

It is clear from these considerations that the conditiondI /I r
!1 indeed implies that a wide time scale separation for
tary and vibrational motions exists,ḟ/v j!1. Since ḟ
;Pf /I r;1/N3 andv0;1/N, this condition imposes a lowe
bound for N for a given value of Pf , namely, N
@(Pf /ma2v)1/2.

Note also that for the case of free rotation the dynam
can be solved without dropping the quadratic term in
expression fordI . In fact, using the additional coordinat
transformationQ̃j5Qj2l j

2Bj with

l j
2~Pf!5S ḟ0

ṽ j
D 2

, ṽ j
2~Pf!5v j

22ḟ0
2 , ~54!

and leaving momenta unchanged, the Hamiltonian~7! as-
sumes the form

H5
1

2 (
j 50

N21

~Pj
21ṽ j

2Q̃j
2!1H0~Pf!, ~55!

whereH0(Pf) does not depend on the bath variables. Sin
the above transformation is canonical, the new coordina

$Q̃j ,Pj% evolve as normal modes of the unperturbed b
according to Eqs.~44! and~45!. Then, expressingdI in terms
04110
e
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of Q̃j , one can get the results obtained above but w
shifted frequenciesṽ j'v j2ḟ0

2/2v j .
To conclude this section, we consider the dynamics

rotational motion beyond the rigid-rod approximation by ta
ing into account the coupling between vibrational and ro
tional motions. We have derived a stochastic equation for
angular velocity which has essentially non-Markovian ch
acter. Because of the dominant role of the lowest vibratio
modes, it may be more convenient in practice to consider
dynamics of the slowest vibrational modes explicitly and n
glect altogether the coupling of the system to the fas
modes. As a compromise to integrating the equations of m
tion of all degrees of freedom, one can consider the Newt
ian dynamics of the lowest modes and treat the remain
degrees of freedom stochastically. In this case the system
equations to solve includes equations of motion for
modes withj 50,1, . . . ,N021, and the stochastic equatio
for rotary motion

I rf̈~ t !52U8~f!12 (
j 50

N021

Bj Pj~ t !1g~ t !. ~56!

In this equation the random torqueg(t) has the same form a
before except that it no longer includes contributions fro
the firstN021 modes. The corresponding memory functi
appearing ing(t),

K~ t !5
1

N (
j 5N0

N21 S v

v j
D 4

cos~v j t !, ~57!

is an oscillating and decaying function of time fort;1/v0,
while on longer time scales it exhibits more complex beh
ior ~Fig. 1!.

III. TAGGED OSCILLATOR DYNAMICS

In light of the important finite length effects observed
the elastic rotor system, it is worthwhile to explore the e
fects of a finite bath of mesoscopic scale on the dynamic
the terminal atom in a collinear harmonic chain. The issue
finite bath effects should be particularly relevant to the stu
of transport properties of tagged particles in finite asse
blies, such as atomic clusters of mesoscopic size.

Consider a chain consisting ofN12 harmonically
coupled atoms labeled asi 50,1, . . . ,N,N11 in which the
position of the first atom is fixed,q050. The Hamiltonian
for the system is

H5
1

2m (
i 51

N11

pi
21

mv2

2 (
i 51

N11

~qi2qi 21!2. ~58!

In the limit N→`, it has been shown that the coordinate
the terminal atomqN11(t)[q(t) satisfies the generalize
Langevin equation@7#

q̈~ t !52v2E
0

t

dt L~ t2t!q̇~t!1F~ t !, ~59!
3-5
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FIG. 1. The memory function given by Eq
~57! for the chain withN5100.
s
-

e

is

t-

o-

d
n

on
where the forceF(t) is a function of all initial displacement
and velocities exceptq̇, and the memory function is ex
pressed in terms of Bessel functions

L~ t !5J0~2vt !1J2~2vt !5J1~2vt !/vt. ~60!

To examine the effects of finite chain lengths, let us d
compose the Hamiltonian asH5Hs1Hc1Hb , where

Hs5
p2

2m
1

kq2

2
, Hc52

1

2
kqqN , ~61!

k5mv2 is the spring constant, and the bath Hamiltonian

Hb5
1

2m (
i 51

N

pi
21

mv2

2 (
i 51

N

~qi2qi 21!21
kqN

2

2
. ~62!

One can recognizeHb as the Hamiltonian of a chain consis
ing of N12 atoms with fixed positions for the first (i 50)
and last (i 5N11) atoms. This Hamiltonian can be diag
nalized,

Hb5
1

2 (
j 51

N

~Pj
21v j

2Qj
2!, ~63!

v j52v sinS p j

2~N11! D , ~64!

by means of the transformations

qi5
1

Am
(
j 51

N

Ai j Qj , pi5Am(
j 51

N

Ai j Pj , ~65!

with normalized eigenvectors
04110
-

Ai j 5S 2

N11D 1/2

sinS p i j

N11D . ~66!

The HamiltonianHc in normal coordinates reads

Hc52(
j 51

N

G jQjq, ~67!

where the coupling coefficientG j5kAN j /Am can be written
as

G j52
k

Am
S 2

N11D 1/2

~21! j sinS p j

N11D . ~68!

The equations of motion for the normal modes are

Q̈j~ t !52v j
2Qj~ t !1G jq~ t !, ~69!

for j 51, . . . ,N, which have the solution

Qj~ t !5Qj
0~ t !1

G j

v j
E

0

t

dt q~t!sinv j~ t2t!, ~70!

where Qj
0(t) is the normal coordinate for the unperturbe

bath given by Eq.~44!. Using integration by parts, this ca
be written as

Qj~ t !5Qj
0~ t !1

G j

v j
2 H q~ t !2q cosv j t

2E
0

t

dt q̇~t!cosv j~ t2t!J . ~71!

Substitution of this expression into the equation of moti
for the terminal atom
3-6
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FIG. 2. The memory functionK(t) in Eq.
~73! for different numbers of atomsN in the
chain.
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q̈~ t !52v2q~ t !1
1

m (
j 51

N

G jQj~ t ! ~72!

finally yields an equation in the form of a generalized Lang
vin equation:

q̈~ t !52V2q~ t !1F~ t !2v2E
0

t

dt K~ t2t!q̇~t!t. ~73!

Here the ‘‘random’’ forceF(t)5Fs(t)1Fb(t) has a part
Fs(t) depending on the initial displacement of the termin
atomq,

Fs~ t !52
q

m (
j 51

N S G j

v j
D 2

cos~v j t !, ~74!

and a partFb(t) that is a function of the displacements an
momenta of the remaining atoms of the chain~bath!,

Fb~ t !5
1

m (
j 50

N

G jQj
0~ t !. ~75!

Comparing Eq.~73! with Eq. ~59!, we note the existence
of an additional harmonic force with associated frequenc

V25v22
1

m (
j 50

N S G j

v j
D 2

5
v2

N11
. ~76!

The dimensionless memory functionK(t) in Eq. ~73! has
the form

K~ t !5
1

mv2 (
j 51

N S G j

v j
D 2

cos~v j t !. ~77!

Using Eqs.~46! and~47!, K(t) can be written in the form of
the fluctuation-dissipation relation
04110
-

l

K~ t !5
bm

v2
^FbFb~ t !&, ~78!

where the average is taken over the bath variables$Qj ,Pj%.
Using expression~68! for the coupling coefficientsG j , one
can write the memory function as

K~ t !5
2

N11 (
j 51

N

cos2S p

2

j

N11D cos~v j t !. ~79!

In the limit N→`, the sum in the above expression can
converted into the integral

K~ t !5
4

pE0

p/2

du cos2u cos~2vt sinu!. ~80!

Keeping in mind the integral representation for Bessel fu
tions

J2i~z!5
2

pE0

p/2

du cos~2iu!cos~z sinu!, ~81!

one can see that Eq.~80! gives the memory functionL(t) for
the semi-infinite chain, Eq.~60!. However, for finite chains
of moderate length, the memory functionK(t) differs sig-
nificantly from L(t) ~see Fig. 2!. For times shorter thanTr
5N/v, the time scale of the reflection of sound waves fro
the anchored part of the chain,K(t) oscillates around a nega
tive value that approaches zero asN increases. Note that th
existence of a region of time for which the memory functi
is negative is not uncommon and has been discussed rec
in Ref. @11#.

The exact expression~79! for the memory function is not
very convenient to use when the number of atoms is la
but finite. Since the commonly used procedure of convert
a sum to an integral quite often gives unsatisfactory resu
3-7
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one may wish to have an alternative representation for se
like ~79!. We address this problem in the next section.

IV. CORRELATION FUNCTIONS

In this section we discuss properties of the normaliz
velocity autocorrelation function~VAF! of atomi, defined by
Ci(t)5^q̇i(t)q̇i&/^q̇i

2&, where the average is taken over c
ordinates and momenta of the whole system. The VAF
termines the transport properties of the chain through its c
nection with the diffusion constant of thei th atom, Di

5^q̇2&*0
`dt Ci(t). For a harmonic chain with periodi

boundary conditions,Ci(t)5J0(2vt) in the limit of largeN,
and the diffusion constant takes on the nonzero valueD
5(2mvb)21 @12#. Some authors@13,14# have interpreted
the finite diffusion constant for a tagged oscillator as a c
sequence of the zero-frequency mode present in a sy
with periodic boundary conditions. To support this conc
sion, Florencio and Lee@13# considered a harmonic chai
with both ends fixed to remove the zero-frequency mo
The system, governed by the Hamiltonian in Eq.~62!, has a
VAF for atom i given by @15#

Ci~ t !5J0~2vt !2J4i~2vt !. ~82!

Since the integral*0
`dt Jn(at)51/a does not depend of th

Bessel function indexn, this expression indeed leads to
vanishing diffusion coefficient. This result is correct, ho
ever, only for atoms near the fixed ends with finite indicei.
For atoms in the bulk of the infinite chain, one has to take
limit i→` beforecalculation of the diffusion constant. The
Ci(t)→J0(2vt), so the dynamics of atoms located in th
bulk of the chain with fixed ends is the same as that in
periodic system in the limitN→`. Actually, the nonzero
diffusion constant for a bulk atom is a general property
infinite one-dimensional harmonic chains. It is a manifes
tion of the delocalization of atoms in the limitN→` and
does not depend on the type of boundary condition. For
ample, for the chain with one fixed end considered in
previous section, one can see that the fluctuations^qi

2&
5 i /mbv2 diverge with increasingi while ^(qi2qi 21)2&
51/mbv2 is finite for anyi.

The velocity autocorrelation function for the termin
atom of the semi-infinite chain can be obtained from
generalized Langevin equation~59!. In fact, since^F(t)q̇&
50, the equation of motion for the VAF is

Ċ~ t !52v2E
0

t

dt L~ t2t!C~t!. ~83!

Using the Laplace transform, one can verify thatC(t) coin-
cides with the memory functionL(t)5J1(2vt)/vt and
yields a nonzero diffusion constant.

The result in Eq.~82! can be derived by expressing th
velocities in terms of normal modes, Eqs.~65!, which gives
04110
es

d

-
n-

-
m

-

.

e

e

f
-

x-
e

e

Ci~ t !5
2

N11 (
j 51

N

sin2S p i j

N11D cosS 2vt sin
p j

2~N11! D .

~84!

Converting this sum into an integral in the limitN→` yields

Ci~ t !5
4

pE0

p/2

du sin2~2iu!cos~2vt sinu!5J0~2vt !

2J4i~2vt !. ~85!

This expression has the evident drawback of not being
variant with respect to the transformationi→(N11)2 i , that
is, for instance,C1(t)ÞCN(t). Note that the same shortcom
ing is also evident in Hamilton’s result for displacemen
@16#

qi~ t !5(
j 51

` S qj~0!1m21pj~0!E
0

t

dtD @J2(i 2 j )~2vt !

2J2(i 1 j )~2vt !#, ~86!

while the exact formula

qi~ t !5(
j 51

N S qj~0!1m21pj~0!E
0

t

dtD (
k51

N

AjkAik cos~vkt !

~87!

has the desirable symmetry. The trouble arises, of cou
from the fact that the conversion from a sum to an integra
Eqs. ~84! and ~87! can be done only if the labeli is finite.
Below we shall obtain an exact representation for the V
that is particularly convenient in the case of the large
finite N.

Using the generating function

cos~z sinu!5J0~z!12(
i 51

`

J2i~z!cos~2iu! ~88!

for the Bessel functions, Eq.~84! can be written as

Ci~ t !5RiJ0~2vt !1(
j 51

`

Si j J2 j~2vt !, ~89!

where

Ri5
2

N11 (
k51

N

sin2S pki

N11D5 (
k51

N

Aik
2 51, ~90!

Si j 5
4

N11 (
k51

N

sin2S p ik

N11D cosS p jk

N11D . ~91!

Using the formula

(
k51

N

cos~kz!5211cos
zN

2
sin

z~N11!

2
sin21

z

2
, ~92!

which holds if sinz/2Þ0, one can show thatSi j is zero for
every i and j except for three sets ofj:
3-8
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$ j 1%52~N11!s, ~93!

$ j 2%52~N11!s22i , ~94!

$ j 3%52~N11!~s21!12i , ~95!

where s51,2,3, . . . . Note that for all j from the set$ j 1%,
Si j 52, while for all j in the sets$ j 2% and $ j 3%, Si j 521.
Using these results, we finally have

Ci~ t !5J0~2vt !12 (
j P$ j 1%

J2 j~2vt !2 (
j P$ j 2%,$ j 3%

J2 j~2vt !.

~96!

It is easy to see that this expression is invariant under
transformationi→(N11)2 i , as the sets$ j 2% and$ j 3% trans-
form into each other while the set$ j 1% is invariant under the
transformation. In the limitN→`, the Bessel functions with
indices proportional toN or higher vanish. Then, for atom
near the origin of the chain~finite i ), we have Eq.~82!, while
the equation

Ci~ t !5J0~2vt !2J4(N112 i )~2vt ! ~97!

holds for atoms near the other end of the chain at indeN
112 i . Clearly Eq.~82! and Eq.~97! give the same expres
sion for the symmetric atoms with labelsi andN112 i . For
atoms in the bulk of the chain where bothi andu i 2Nu are of
the order ofN, we haveCi(t)5J0(2vt) in the limit N→`,
as in the case of periodic boundary conditions. For th
atoms, we obtain a finite diffusion coefficientD51/2bvm.

For the case of a chain ofN11 atoms with one end fixed
the Hamiltonian takes the form~2! and the transformation to
the normal modes is given by Eqs.~10! and ~11!. Then the
VAF assumes the form

Ci~ t !5
4

2N11 (
j 50

N21

sin2S p i
2 j 11

2N11D cos~v j t !. ~98!

Following the same procedure used above, one again ob
Eq. ~89! for the VAF with Ri51. However, the summation
over indexj now runs from 0 toN21, and the matrixSi j has
the form

Si j 5
8

2N11 (
k50

N21

sin2S p i
2k11

2N11D cosS p j
2k11

2N11D .

~99!

One can find again thatSi j 50 for any j except elements o
the sets

$ j 1%5~2N11!s, ~100!

$ j 2%5~2N11!s22i , ~101!

$ j 3%52~N11!~s21!12i , ~102!
04110
e

e

ins

where s51,2,3, . . . . For thej from the first, second, and
third sets we obtainSi j 52(21)s, (21)s11, and (21)s, re-
spectively. These relations yield a correlation functionCi(t)
of the form

Ci~ t !5J0~2vt !12(
s51

`

~21!sJs(4N12)~2vt !

2(
s50

`

~21!sJs(4N12)14i~2vt !

2(
s51

`

~21!sJs(4N12)24i~2vt !. ~103!

In the limit of largeN this expression leads to Eq.~82! for
atoms near the fixed end~finite i ), while for atoms near the
free end we have

Ci~ t !5J0~2vt !1J4(N2 i )12~2vt !. ~104!

For the terminal atom (i 5N), this equation givesC(t)
5J1(2vt)/vt, the result already obtained from the Langev
equation. The VAF~104! decays ast23/2, faster than the
decay for the case of the periodic boundary condition, wh
the decay goes ast21/2, and the corresponding diffusion con
stant D51/bvm is larger by a factor of 2. For the bulk
atoms, only the functionJ0(2vt) survives in Eq.~103!, just
as in the case of periodic boundary conditions.

V. CONCLUDING COMMENTS

In this paper we have examined the influence of fin
bath effects on the structure of non-Markovian stocha
equations. For a tagged oscillator in a finite collinear cha
the finite-size effects lead not only to strong modification
the memory function in the GLE, but also to an addition
harmonic force whose spring constant scales as 1/N. It
should be noted, however, that if one rewrites the GLE
that the the memory term involves oscillator positions rat
than velocities, the corresponding equation has the s
form for both the finite and~semi-!infinite chains. Moreover,
in this case, for the time intervalt,N/v, the corresponding
memory function of the finite chain is very close to that
the infinite chain.

The elastic rotor system provides another model in wh
finite bath effects have important consequences. Althoug
is a simple matter to write down the GLE for the angu
velocity in formal operator form using the Mori projectio
operator, the evaluation of the memory function is difficu
using this approach. On the other hand, the projection op
tor defined in Eq.~29! can be used to obtain a stochas
equation for the variable of interest and an explicit expr
sion for the memory function in a straightforward fashio
Although the same results can be obtained by the exp
integration of the equations of motion for the normal mod
the projection operator formalism allows one to analyze
stochastic nature of the system. The essentially n
Markovian character of the resulting equation for the an
in the elastic rotor system may be a serious obstacle
3-9
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numerical simulation of the thermal fluctuation effects w
stochastic dynamics methods. The dominating role of
lowest bath modes suggests that explicit integration of
equations of motion for such modes may be a simple
effective generalization of the widely used rigid-rod appro
mation when intrinsic degrees of freedom are replaced
rigid constraints.

Among other phenomena for which the presented findi
may be of potential importance, one can mention the
namical properties of rodlike polymers and polymer fra
ments smaller than a persistence length. Dielectric relaxa
and the Kerr effect in dilute solutions of rodlike polymers a
usually interpreted in the context of a model of overdamp
Brownian motion of a rigid rotor@17#. The only source of
randomness in the model is assumed to arise from collis
with surrounding solvent molecules~external noise!, while
the coupling of rotation with fluctuating internal motions~in-
ternal noise! is completely ignored. Under these assumptio
the frequency dependence of observables is characterize
a single relaxation timet r which is of the order of the in-
verse rotary diffusion coefficient 1/Dr . This approach, origi-
nated by Debye, has been successfully applied for decad
many systems and phenomena@18#. It may not be adequate
l

O.

y
.
.
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however, in the low damping regime when the viscosity
the solvent is small and the Brownian forces cause onl
tiny perturbation during the period of the external ac field.
this case the fluctuation of the intramolecular degrees of fr
dom may be quite pronounced, and one may expect a cr
over from purely diffusive motion to more or less regul
rotation modulated with the frequency of the predominat
mode. This conclusion seems to be quite general and in
sitive to the simplifying assumptions used in the pres
work. In particular, in the case of a semistiff chain, the dom
nating mode may be related to a bending motion of the ch
rather than longitudinal vibrations. One may also specu
that for some combinations of parameters the collisions
the chain with solvent molecules could contribute sign
cantly to the torque of the entire chain, while the effect
collisions on the longitudinal vibrations may be negligible
a characteristic time scale of the external field. Under th
conditions, both intrinsic vibrations and solvent-chain co
sions would act independently and contribute additively
the total torque. Further work is needed to elucidate the ex
conditions under which the intrinsic vibrational motion
dominate over solvent interactions and to describe their
effect on the dynamics of the system.
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